Analysis: u^2-1≥0, u^2≥1, u≥1 or u≤-1u-1≥0, u≥1; u≥0∴u≥1 Solution: ∵u≥1 The original equation is variable It is: √(u^2-1)+√(u-1)=√u^3∵√u^3≥1∴ Both sides of the equation are the same as ÷√u^3: √(1/u-1/ u^3)+√(1/u^2-1/u^3)=1 Let √(1/u-1/u^3)=

2024/05/1308:46:32 education 1193

Analysis: u^2-1≥0, u^2≥1, u≥1 or u≤-1u-1≥0, u≥1; u≥0∴u≥1 Solution: ∵u≥1 The original equation is variable It is: √(u^2-1)+√(u-1)=√u^3∵√u^3≥1∴ Both sides of the equation are the same as ÷√u^3: √(1/u-1/ u^3)+√(1/u^2-1/u^3)=1 Let √(1/u-1/u^3)= - DayDayNews

Analysis: u^2-1≥0, u^2≥1, u≥1 or u≤-1

u-1≥0, u≥1; u≥0

∴u≥1

Solution: ∵u≥1

The original equation can be Becomes: √ (u^2-1) + √ (u-1) = √u^3

∵√u^3≥1

∴ The same equation on both sides of the equation is ÷√u^3:

√ (1/u- 1/u^3) + √ (1/u^2-1/u^3) = 1

Let √ (1/u-1/u^3) = a (a≥0), √ (1/u^ 2-1/u^3)=b(b≥0)

∴a+b=1…①

Another: a^2-b^2=1/u-1/u^2=(u-1)/ u^2…②

∴(a+b)(a-b)=(u-1)/u^2…③

Substitute ① into ③ to get: a-b=(u-1)/u^2…④

①+④ to get: 2a =(u^2+u-1)/u^2

a=(u^2+u-1)/2u^2…⑤

√(1/u-1/u^3)=(u^2+u- 1)/2u^2

∴(u^2-1)/u^3=(u^2+u-1)^2/4u^4

∴4u^3-4u=(u^2+u-1) ^2

∴4u(u^2-1)=[(u^2-1)+u]^2

∴4u(u^2-1)=(u^2-1)^2+2u(u^2 -1)+u^2

∴(u^2-1)^2-2u(u^2-1)+u^2=0

∴[(u^2-1)-u]^2=0

∴u ^2-u-1=0

∴u1=(1+√5)/2,

u2=(1-√5)/2 (∵u≥1, ∴ discard)

∴The solution of the original equation is: u= (1+√5)/2

education Category Latest News