CVPR2023自动驾驶相关论文

2023年07月19日13:55:05 教育 1103

3D目标检测

1.Towards Domain Generalization for Multi-view 3D Object Detection in Bird-Eye-View

2.MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection

3.Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency

4.Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection

5.Virtual Sparse Convolution for Multimodal 3D Object Detection

6.X3KD: Knowledge Distillation Across Modalities, Tasks and Stages for Multi-Camera 3D Object Detection

7.3D Video Object Detection with Learnable Object-Centric Global Optimization

8.CAPE: Camera View Position Embedding for Multi-View 3D Object Detection

9.Bi3D: Bi-domain Active Learning for Cross-domain 3D Object Detection

10.AeDet: Azimuth-invariant Multi-view 3D Object Detection

11.Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection

12.LinK: Linear Kernel for LiDAR-based 3D Perception

13.CAPE: Camera View Position Embedding for Multi-View 3D Object Detection

14.PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection

15.LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion

BEV感知

1.Towards Domain Generalization for Multi-view 3D Object Detection in Bird-Eye-View

2.Understanding the Robustness of 3D Object Detection with Bird's-Eye-View Representations in Autonomous Driving

3.TBP-Former: Learning Temporal Bird's-Eye-View Pyramid for Joint Perception and Prediction in Vision-Centric Autonomous Driving

Occpuancy

1.Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction

分割相关

1.Delivering Arbitrary-Modal Semantic Segmentation

2.Token Contrast for Weakly-Supervised Semantic Segmentation

3.ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution

4.Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation

5.MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving

6.FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation

7.InstMove: Instance Motion for Object-centric Video Segmentation

8.MobileVOS: Real-Time Video Object Segmentation Contrastive Learning meets Knowledge Distillation

9.MP-Former: Mask-Piloted Transformer for Image Segmentation

10.Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

11.LaserMix for Semi-Supervised LiDAR Semantic Segmentation

12.Beyond Appearance: a Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks

13.EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision

14.Generative Semantic Segmentation

15.DynaMask: Dynamic Mask Selection for Instance Segmentation

16.Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation

17.Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation

18.DiGA: Distil to Generalize and then Adapt for Domain Adaptive Semantic Segmentation

19.3D Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition Point Clouds

20.Generative Semantic Segmentation

SLAM

1.Renderable Neural Radiance Map for Visual Navigation

2.PVO: Panoptic Visual Odometry

Transformer

1.Visual Atoms: Pre-training Vision Transformers with Sinusoidal Waves

2.Reversible Vision Transformers

3.BiFormer: Vision Transformer with Bi-Level Routing Attention

4.PVO: Panoptic Visual Odometry

Few-Shot/Zero-Shot

1.Zero-shot Object Counting

Diffusion Model

1.Person Image Synthesis via Denoising Diffusion Model

2.Controllable Mesh Generation Through Sparse Latent Point Diffusion Models

3.Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models

知识蒸馏

1.Learning to Retain while Acquiring: Combating Distribution-Shift in Adversarial Data-Free Knowledge Distillation

2.KD-DLGAN: Data Limited Image Generation via Knowledge Distillation

点云相关

1.ACL-SPC: Adaptive Closed-Loop system for Self-Supervised Point Cloud Completion

2.PointCert: Point Cloud Classification with Deterministic Certified Robustness Guarantees

3.Neural Intrinsic Embedding for Non-rigid Point Cloud Matching

4.Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting

5.Rotation-Invariant Transformer for Point Cloud Matching

6.Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis

7.SCPNet: Semantic Scene Completion on Point Cloud

8.CLIP2Scene: Towards Label-Efficient 3D Scene Understanding by CLIP

9.PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations

10.Binarizing Sparse Convolutional Networks for Efficient Point Cloud Analysis

11.NerVE: Neural Volumetric Edges for Parametric Curve Extraction from Point Cloud

12.LidarGait: Benchmarking 3D Gait Recognition with Point Clouds

轨迹预测

1.IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint Multi-Agent Trajectory Prediction

异常检测

1.Multimodal Industrial Anomaly Detection via Hybrid Fusion

4D Radar

1.Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision

目标检测

1.MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection

2.Lite DETR : An Interleaved Multi-Scale Encoder for Efficient DETR

3.Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection

4.Dense Distinct Query for End-to-End Object Detection

5.Detecting Everything in the Open World: Towards Universal Object Detection

6.One-to-Few Label Assignment for End-to-End Dense Detection

目标跟踪

1.Referring Multi-Object Tracking

2.Visual Prompt Multi-Modal Tracking

3.MotionTrack: Learning Robust Short-term and Long-term Motions for Multi-Object Tracking

4.On the Benefits of 3D Pose and Tracking for Human Action Recognition

深度估计

1.Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation

2.HRDFuse: Monocular 360°Depth Estimation by Collaboratively Learning Holistic-with-Regional Depth Distributions

车道线检测

1.BEV-LaneDet: a Simple and Effective 3D Lane Detection Baseline

其它

1.PMatch: Paired Masked Image Modeling for Dense Geometric Matching

2.Detecting Everything in the Open World: Towards Universal Object Detection

3.One-to-Few Label Assignment for End-to-End Dense Detection

4.V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle Cooperative Perception

相关的文章参考

几种信号降噪算法(第一部分)

https://www.toutiao.com/article/7190201924820402721/

几种信号降噪算法(第二部分)

https://www.toutiao.com/article/7190270349236683264/

机械故障诊断及工业工程故障诊断若干例子(第一篇)

https://www.toutiao.com/article/7193957227231855163/

知乎咨询:哥廷根数学学派

算法代码地址,面包多主页:

https://mbd.pub/o/GeBENHAGEN/work

擅长现代信号处理(改进小波分析系列,改进变分模态分解,改进经验小波变换,改进辛几何模态分解等等),改进机器学习,改进深度学习,机械故障诊断,改进时间序列分析(金融信号,心电信号,振动信号等)

CVPR2023自动驾驶相关论文 - 天天要闻

CVPR2023自动驾驶相关论文 - 天天要闻

CVPR2023自动驾驶相关论文 - 天天要闻

教育分类资讯推荐

【学科掌门人】刘鹏:在黑白之间守护健康 - 天天要闻

【学科掌门人】刘鹏:在黑白之间守护健康

他们,是舵手;他们,是领头羊;他们,是才能卓荦的团队灵魂;有着高瞻远瞩的视野和坚如磐石的决心,引领学科乘风破浪,砥砺前行......让我们通过【学科掌门人】系列,走近他们,了解他们,倾听他们的医者情怀和学科故事…… 清 晨七点五十分,湖南省人民医院放射科阅片室已沉浸在工作状态中。科主任刘鹏立于投影前,正带领...
官方通报:考生0分,3名监考教师被免职 - 天天要闻

官方通报:考生0分,3名监考教师被免职

封面新闻官方通报:考生0分,3名监考教师被免职 近日,据多名自称四川省达州市中考生的微博用户反映,在2025年5月20日的体育考试中,某考生凭借亲属关系(亲属为学校教师)修改考试成绩,涉及引体向上和球类项目。 6月17日凌晨,达州市教育局发布相关情况通报:近日,我市在组织高中阶段学校招生考试过程中,经同场考生举报...
河南一学院更名为大学 商家制作小偷“黑名单”相册供人翻阅 日薪达 3 万 郑州短剧市场招人了 - 天天要闻

河南一学院更名为大学 商家制作小偷“黑名单”相册供人翻阅 日薪达 3 万 郑州短剧市场招人了

⊙警方回应男子凌晨在郑州街头“抢小孩”近日一段监控视频显示:6月15日凌晨,在郑州街头一名黑衣男子和一名白衣男子发生拉扯,随后,附近多名群众合力将其中的黑衣男子摁倒在地。有网友称,视频中多名群众是见义勇为,成功制止了黑衣男子“抢小孩”。当时到底是什么情况?详情(大河报•豫视频记者 邵可强)▼⊙演员、编...
小升初数学逆袭!90%家长不知道的行程问题解题秘籍! - 天天要闻

小升初数学逆袭!90%家长不知道的行程问题解题秘籍!

小升初数学逆袭!90%家长不知道的行程问题解题秘籍,孩子掌握稳上名校!各位家长注意啦!小升初数学最让娃头疼的行程问题,其实藏着90%家长不知道的“秒杀套路”!为什么孩子总在行程题上栽跟头?• 题型多变:相遇、追及、环形跑道…娃一见就懵!•
毕业论文降AI率,别本末倒置 - 天天要闻

毕业论文降AI率,别本末倒置

澎湃特约评论员 南木毕业论文AI率,应不应该查?怎么查?毕业季的这个话题引发了很多大学生讨论。随着生成式人工智能的逐步完善,毕业生使用AI代写毕业论文的情况,引起越来越多高校的注意。
解课业之重负,绽实践之芳华!且看“双减”路上的成长答卷 - 天天要闻

解课业之重负,绽实践之芳华!且看“双减”路上的成长答卷

日前,苏州科技城外国语附属镇湖小学校的综合实践成果展示活动在师生们的翘首期盼中拉开帷幕。此次活动是一场知识与实践交织、创意与成长共舞的盛宴,充分展现了镇小学子们在综合实践中的独特风采与丰硕收获。“绿野仙踪”:自然里的创意诗篇走进成果展现场,“绿野仙踪”展区宛如一片微观自然天地。孩子们精心收集形态各异...
2025年赣县城区初中学校七年级招生工作方案 - 天天要闻

2025年赣县城区初中学校七年级招生工作方案

一、招生对象(一)公办初中学校1.目前在赣县城区公办小学(含九年一贯制学校的小学部,下同)就读六年级,2025年秋季申请在赣县城区公办初中学校(含九年一贯制学校初中部,下同)七年级就读的学生。2.