这些C++ 内存泄露的坑你踩过几种?

2021年09月11日17:56:01 科技 1220

推荐视频:

这些C++ 内存泄露的坑你踩过几种? - 天天要闻

那么其实调用delete pArrayObjs;的时候,释放了整个pArrayObjs的内存,但是只调用了pArrayObjs[0]析构函数并释放中的m_pStr指向的内存。pArrayObjs 1~4并没有调用析构函数,从而导致其中的m_pStr指向的内存没有释放。所以我们要注意new和delete要匹配使用,当使用的new []申请的内存最好要用delete[]。那么留一个问题给读者, 上面代码delete m_pStr;会导致同样的问题吗?如果总是要让我们自己去保证,new和delete的配对,显然还是难以避免错误的发生的。这个时候也可以使用unique_ptr, 修改如下:

void MemoryLeakFunction()
{
  const int iSize = 5;
  std::unique_ptr<MemoryLeakClass[]> pArrayObjs = std::make_unique<MemoryLeakClass[]>(iSize);
  for (int i = 0; i < iSize; i++)
  {
    (pArrayObjs.get()+i)->DoSomething();
  }
}

【文章福利】需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,内核,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等)

这些C++ 内存泄露的坑你踩过几种? - 天天要闻

3. delete (void*)

如果上一个章节已经有理解,那么对于这个例子,就很容易明白了。正因为C++的灵活性,有时候会将一个对象指针转换为void *,隐藏其类型。这种情况SDK比较常用,实际上返回的并不是SDK用的实际类型,而是一个没有类型的地址,当然有时候我们会为其亲切的取一个名字,比如叫做XXX_HANDLE。那么继续用上述为例MemoryLeakClass, SDK假设提供了下面三个接口:

  1. InitObj创建一个对象,并且返回一个PROGRAMER_HANDLE(即void *),对应用程序屏蔽其实际类型
  2. DoSomething 提供了一个功能去做一些事情,输入的参数,即为通过InitObj申请的对象
  3. 应用程序使用完毕后,一般需要释放SDK申请的对象,提供了FreeObj
typedef void * PROGRAMER_HANDLE;

PROGRAMER_HANDLE InitObj()
{
  MemoryLeakClass* pObj = new MemoryLeakClass();
  return (PROGRAMER_HANDLE)pObj;
}

void DoSomething(PROGRAMER_HANDLE pHandle)
{
  ((MemoryLeakClass*)pHandle)->DoSomething();
}

void FreeObj(void *pObj)
{
  delete pObj;
}

看到这里,也许有读者已经发现问题所在了。上述代码在调用FreeObj的时候,delete看到的是一个void *, 只会释放对象所占用的内存,但是并不会调用对象的析构函数,那么对象内部的m_pStr所指向的内存并没有被释放,从而会导致内存泄露。修改也是自然比较简单的:

void FreeObj(void *pObj)
{
  delete ((MemoryLeakClass*)pObj);
}

那么一般来说,最好由相对资深的程序员去进行SDK的开发,无论从设计和实现上面,都尽量避免了各种让人泪流满满的坑。

4. Virtual destructor

现在大家来看看这个很容易犯错的场景, 一个很常用的多态场景。那么在调用delete pObj;会出现内存泄露吗?

class Father
{
public:
  virtual void DoSomething()
{
    std::cout << "Father DoSomething()" << std::endl;
  }
};

class Child : public Father
{
public:
  Child()
  {
    std::cout << "Child()" << std::endl;
    m_pStr = new char[100];
  }

  ~Child()
  {
    std::cout << "~Child()" << std::endl;
    delete[] m_pStr;
  }

  void DoSomething()
{
    std::cout << "Child DoSomething()" << std::endl;
  }
protected:
  char* m_pStr;
};

void MemoryLeakVirualDestructor()
{
  Father * pObj = new Child;
  pObj->DoSomething();
  delete pObj;
}

会的,因为Father没有设置Virtual 析构函数,那么在调用delete pObj;的时候会直接调用Father的析构函数,而不会调用Child的析构函数,这就导致了Child中的m_pStr所指向的内存,并没有被释放,从而导致了内存泄露。并不是绝对,当有这种使用场景的时候,最好是设置基类的析构函数为虚析构函数。修改如下:

class Father
{
public:
  virtual void DoSomething()
{
    std::cout << "Father DoSomething()" << std::endl;
  }
  virtual ~Father() { ; }
};

class Child : public Father
{
public:
  Child()
  {
    std::cout << "Child()" << std::endl;
    m_pStr = new char[100];
  }

  virtual ~Child()
  {
    std::cout << "~Child()" << std::endl;
    delete[] m_pStr;
  }

  void DoSomething()
{
    std::cout << "Child DoSomething()" << std::endl;
  }
protected:
  char* m_pStr;
};

5. 对象循环引用

看下面例子,既然为了防止内存泄露,于是使用了智能指针shared_ptr;并且这个例子就是创建了一个双向链表,为了简单演示,只有两个节点作为演示,创建了链表后,对链表进行遍历。
那么这个例子会导致内存泄露吗?

struct Node
{
  Node(int iVal)
  {
    m_iVal = iVal;
  }
  ~Node()
  {
    std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
  }
  void PrintNode()
{
    std::cout << "Node Value: " << m_iVal << std::endl;
  }

  std::shared_ptr<Node> m_pPreNode;
  std::shared_ptr<Node> m_pNextNode;
  int m_iVal;
};

void MemoryLeakLoopReference()
{
  std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
  std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
  pFirstNode->m_pNextNode = pSecondNode;
  pSecondNode->m_pPreNode = pFirstNode;

  //Iterate nodes
  auto pNode = pFirstNode;
  while (pNode)
  {
    pNode->PrintNode();
    pNode = pNode->m_pNextNode;
  }
}

先来看看下图,是链表创建完成后的示意图。有点晕乎了,怎么一个双向链表画的这么复杂,黄色背景的均为智能指针或者智能指针的组成部分。其实根据双向链表的简单性和下图的复杂性,可以想到,智能指针的引入虽然提高了安全性,但是损失的是性能。所以往往安全性和性能是需要互相权衡的。 我们继续往下看,哪里内存泄露了呢?

这些C++ 内存泄露的坑你踩过几种? - 天天要闻


如果函数退出,那么m_pFirstNode和m_pNextNode作为栈上局部变量,智能指针本身调用自己的析构函数,给引用的对象引用计数减去1(shared_ptr本质采用引用计数,当引用计数为0的时候,才会删除对象)。此时如下图所示,可以看到智能指针的引用计数仍然为1, 这也就导致了这两个节点的实际内存,并没有被释放掉, 从而导致内存泄露。

这些C++ 内存泄露的坑你踩过几种? - 天天要闻

你可以在函数返回前手动调用pFirstNode->m_pNextNode.reset();强制让引用计数减去1, 打破这个循环引用。
还是之前那句话,如果通过手动去控制难免会出现遗漏的情况, C++提供了weak_ptr。

struct Node
{
  Node(int iVal)
  {
    m_iVal = iVal;
  }
  ~Node()
  {
    std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
  }
  void PrintNode()
{
    std::cout << "Node Value: " << m_iVal << std::endl;
  }

  std::shared_ptr<Node> m_pPreNode;
  std::weak_ptr<Node>    m_pNextNode;
  int m_iVal;
};

void MemoryLeakLoopRefference()
{
  std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
  std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
  pFirstNode->m_pNextNode = pSecondNode;
  pSecondNode->m_pPreNode = pFirstNode;

  //Iterate nodes
  auto pNode = pFirstNode;
  while (pNode)
  {
    pNode->PrintNode();    
    pNode = pNode->m_pNextNode.lock();
  }
}

看看使用了weak_ptr之后的链表结构如下图所示,weak_ptr只是对管理的对象做了一个弱引用,其并不会实际支配对象的释放与否,对象在引用计数为0的时候就进行了释放,而无需关心weak_ptr的weak计数。注意shared_ptr本身也会对weak计数加1.
那么在函数退出后,当pSecondNode调用析构函数的时候,对象的引用计数减一,引用计数为0,释放第二个Node,在释放第二个Node的过程中又调用了m_pPreNode的析构函数,第一个Node对象的引用计数减1,再加上pFirstNode析构函数对第一个Node对象的引用计数也减去1,那么第一个Node对象的引用计数也为0,第一个Node对象也进行了释放。

这些C++ 内存泄露的坑你踩过几种? - 天天要闻


如果将上述代码改为双向循环链表,去除那个循环遍历Node的代码,那么最后Node的内存会被释放吗?这个问题留给读者。

6. 资源泄露

如果说些作文的话,这一章节,可能有点偏题了。本章要讲的是广义上的资源泄露,比如句柄或者fd泄露。这些也算是内存泄露的一点点扩展,写作文的一点点延伸吧。
看看下述例子, 其在操作完文件后,忘记调用CloseHandle(hFile);了,从而导致内存泄露。

void MemroyLeakFileHandle()
{
  HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)", 
    GENERIC_READ,
    FILE_SHARE_READ,
    NULL, 
    OPEN_EXISTING, 
    FILE_ATTRIBUTE_NORMAL,
    NULL);

  if (INVALID_HANDLE_VALUE == hFile)
  {
    std::cerr << "Open File error!" << std::endl;
    return;
  }

  const int BUFFER_SIZE = 100;
  char pDataBuffer[BUFFER_SIZE];
  DWORD dwBufferSize;
  if (ReadFile(hFile,
      pDataBuffer,
      BUFFER_SIZE,
      &dwBufferSize,
      NULL))
  {
    std::cout << dwBufferSize << std::endl;
  }
}

上述你可以用RAII机制去封装hFile从而让其在函数退出后,直接调用CloseHandle(hFile);。C++智能指针提供了自定义deleter的功能,这就可以让我们使用这个deleter的功能,改写代码如下。不过本人更倾向于使用类似于golang defer的实现方式,读者可以参阅本文相关阅读部分。

void MemroyLeakFileHandle()
{
  HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)", 
    GENERIC_READ,
    FILE_SHARE_READ,
    NULL, 
    OPEN_EXISTING, 
    FILE_ATTRIBUTE_NORMAL,
    NULL);
  std::unique_ptr< HANDLE, std::function<void(HANDLE*)>> phFile(
    &hFile, 
    [](HANDLE* pHandle) {
      if (nullptr != pHandle)
      {
        std::cout << "Close Handle" << std::endl;
        CloseHandle(*pHandle);
      }
    });

  if (INVALID_HANDLE_VALUE == *phFile)
  {
    std::cerr << "Open File error!" << std::endl;
    return;
  }

  const int BUFFER_SIZE = 100;
  char pDataBuffer[BUFFER_SIZE];
  DWORD dwBufferSize;
  if (ReadFile(*phFile,
      pDataBuffer,
      BUFFER_SIZE,
      &dwBufferSize,
      NULL))
  {
    std::cout << dwBufferSize << std::endl;
  }
}

科技分类资讯推荐

美零售商要求中企照常发货,关税美方承担 - 天天要闻

美零售商要求中企照常发货,关税美方承担

特朗普关税重压下,美国货真会像特朗普所说的那样,摆满货架,大批人来买吗?有美国商人已经做了调查,结论是0人想买。美零售商巨头因此不得不求着中国出口商发货,还保证关税成本由美国人买单! 美国....
阿里云通义点金发布DianJin-R1金融领域推理大模型 - 天天要闻

阿里云通义点金发布DianJin-R1金融领域推理大模型

近日,阿里云通义点金团队与苏州大学携手合作,在金融大语言模型领域推出了突破性的创新成果: DianJin-R1 。这款推理增强型金融大模型,融合了先进的技术和全面的数据支持,专为金融任务而设计。
曝iPhone 18 Pro内测屏下3D人脸识别:苹果迈入单挖孔屏时代 - 天天要闻

曝iPhone 18 Pro内测屏下3D人脸识别:苹果迈入单挖孔屏时代

快科技5月4日消息,博主数码闲聊站爆料,iPhone 18 Pro和iPhone 18 Pro Max在测试屏下3D人脸识别,采用单挖孔屏形态。他还爆料,iPhone 18和iPhone 18 Air仍然是药丸屏形态。众所周知,从iPhone X开始,苹果开启了刘海屏时代,在这个刘海内,苹果塞进了原深感摄像头系统,实现了3D人脸识别,该系统包含了多个精密原件
三款7000元附近RTX 5070笔记本对垒,谁更让你心动? - 天天要闻

三款7000元附近RTX 5070笔记本对垒,谁更让你心动?

不得不说,RTX 50系列浪潮来得很快,这么快就有多款产品在7000元附近了,选择面很大。当然,这里的功劳主要是补贴,没补贴的话,这些本还在9000元高位,但有了补贴后,实际价格也是我们需要正视的。这次,我们就找到三款价格在7000元附近的RTX 5070笔记本,看看哪款让你心动。第一款,是七彩虹隐星P16 Pro,原价8999元,到...
未来智能驾驶图鉴:车路协同成主流,道路两侧也安上雷达! - 天天要闻

未来智能驾驶图鉴:车路协同成主流,道路两侧也安上雷达!

新能源汽车风口下,智能驾驶成为起飞的猪。国内供应链发展也十分迅猛,现在10万级的车也能体验智驾,那么在未来,智能驾驶会达到什么样的状态呢?答案是“车路协同”。车端智能是基础现在带智驾功能的车都有一定的硬件基础做支撑,比如毫米波雷达、摄像头、激光雷达、芯片等,通过这些硬件,可以采集车辆周围的环境信息和信...
“英伟达已向中国三家企业通报” - 天天要闻

“英伟达已向中国三家企业通报”

据台湾《工商时报》网站5月3日报道,在针对中国市场的H20芯片遭美国政府禁售后,美国芯片大厂英伟达正加紧开发另一款符合美国出口规定的人工智能(AI)芯片,以继续保住其在中国的市场份额。
金舟投屏文件输出目录设置方法 - 天天要闻

金舟投屏文件输出目录设置方法

金舟投屏文件输出目录怎么设置?跟着我来操作。1、 打开金舟投屏应用2、 在金舟投屏窗口,点击菜单按钮。3、 在弹出的下拉菜单中,选择设置选项。4、 进入设置窗口后,选择点击文件选项。5、 在文件窗口里,点击输出目录按钮,于弹出窗口选择文件输出路径,例如:D:文件保存金舟投屏。6、 点击关闭即可完成操作(9777180)...