Nature:重大进展!发现一种精确切割RNA的CRISPR系统---Cas7-11

2021年09月09日18:55:24 科学 1253

在一项新的研究中,来自美国麻省理工学院麦戈文研究所的研究人员发现了一种细菌酶,他们说这种酶可以扩大科学家们使用的CRISPR工具箱,使其能够轻松地切割和编辑RNA,而在此之前,这种精确性只适用于DNA编辑。这种他们最终命名为Cas7-11的细菌酶在不伤害细胞的情况下修改RNA靶标,这表明除了是一种有价值的研究工具外,它还为治疗应用提供了一个肥沃的平台。相关研究结果于2021年9月6日在线发表在Nature期刊上,论文标题为“Programmable RNA targeting with the single-protein CRISPR effector Cas7-11”。

Nature:重大进展!发现一种精确切割RNA的CRISPR系统---Cas7-11 - 天天要闻

论文共同通讯作者、麦戈文研究所研究员Omar Abudayyeh提及通过使DNA编辑变得快速、廉价和精确而引发现代生物学变得的DNA切割酶Cas9时,说道,“这种新的细菌酶就像是编辑RNA的Cas9。”他补充说,“它精确地在靶标上进行两次切割,而且不会像其他酶那样在切割过程中破坏细胞。”

到目前为止,只有另外一个RNA靶向酶家族,即Cas13,被广泛地开发用于RNA靶向应用。然而,当Cas13识别到它的目标时,它会粉碎细胞中的任何RNA,从而顺便地破坏细胞。与Cas9一样,Cas7-11是一个可编程系统的一部分;它可以通过CRISPR向导指向特定的RNA靶标。Abudayyeh、麦戈文研究员Jonathan Gootenberg(另一名论文共同通讯作者)和他们的同事们通过对微生物世界中发现的CRISPR系统的深入探索发现了Cas7-11。

探索自然多样性

与其他CRISPR蛋白一样,Cas7-11被细菌用来作为防御病毒的机制。在遇到一种新的病毒后,采用CRISPR系统的细菌以病毒遗传物质的小片段形式记录病毒感染。如果该病毒再次出现,CRISPR系统就会被激活,在一小段RNA的引导下,摧毁病毒基因组并消除感染。这些古老的免疫系统是广泛而多样的,不同的细菌部署不同的蛋白质来对抗它们的病毒入侵者。

论文共同作者、美国国家生物技术信息中心进化生物学家Eugene Koonin说,“有些CRISPR蛋白靶向DNA,有些CRISPR蛋白靶向RNA。有些CRISPR蛋白在裂解靶标方面非常有效,但有一些毒性,而另一些则没有。它们引入了不同的切割类型,它们可以在特异性方面有所不同---等等。”

Abudayyeh、Gootenberg和Koonin一直在研究基因组序列,以了解CRISPR系统的自然多样性,并作为潜在的工具分析它们。Abudayyeh说,这个想法是为了利用进化已经在改造蛋白质机器上完成的工作。

当这些作者通过公共数据库来研究不同细菌防御系统的组成部分时,一种从日本东京湾分离出来的细菌Desulfonema ishimotonii的蛋白质引起了他们的注意。它的氨基酸序列表明,它属于一类CRISPR系统,该系统使用大型的多蛋白复合物来寻找和切割它们的目标。但是这种蛋白质似乎拥有它所需要的一切,可以独立完成这项任务。Koonin说,其他已知的单蛋白Cas酶,包括已被广泛用于DNA编辑的Cas9蛋白,属于CRISPR系统的一个单独类别,但是Cas7-11模糊了CRISPR分类系统的界限。他们最终将这种蛋白质命名为Cas7-11。

Nature:重大进展!发现一种精确切割RNA的CRISPR系统---Cas7-11 - 天天要闻

图片来源:doi:10.1038/s41586-021-03886-5


Cas7-11从工程的角度来看是很有吸引力的,因为单一的蛋白质更容易被递送到细胞中,并且比复杂的多蛋白复合物更容易成为编辑工具。但是它的组成也标志着一个意想不到的进化史。这些作者发现有证据表明,通过进化,更复杂的Cas机器的组件融合在一起,形成了Cas7-11蛋白。Gootenberg将此等同于当你之前认为鸟类是唯一会飞的动物时发现了蝙蝠,从而认识到有多种进化路径来实现飞行。他说,“这完全改变了人们对CRISPR系统的思考方式,无论是在功能上还是在进化上。”

精确编辑

当Gootenberg和Abudayyeh在他们的实验室里生产出Cas7-11蛋白并开始对它进行实验时,他们意识到这种不寻常的酶提供了一种操纵和研究RNA的强大手段。当他们把它和向导RNA(gRNA)一起引入细胞时,它精确地切割了它的RNA靶标,而其他RNA却没有受到干扰。这意味着他们可以使用Cas7-11来改变RNA代码中的特定碱基,从而校正基因突变带来的错误。他们还能够对Cas7-11进行编程,以稳定或破坏细胞内的特定RNA分子,这使他们有能力调整这些RNA编码的蛋白质的水平。

Abudayyeh和Gootenberg还发现,Cas7-11切割RNA的能力可以被一种似乎可能也参与触发程序化细胞死亡的蛋白质所抑制,这表明CRISPR防御和对感染的更极端反应之间可能存在联系。

这些作者发现,一种基因治疗载体可以将完整的Cas7-11编辑系统递送给细胞,而且Cas7-11不会损害细胞的健康。他们希望随着进一步的开发,这种酶有一天可能被用来编辑患者RNA中的致病序列,这样他们的细胞能够产生健康的蛋白质,或者下调因遗传疾病而造成伤害的蛋白质的水平。

Gootenberg说,“我们认为Cas7-11的独特切割方式能够实现许多有趣和多样化的应用。没有其他CRISPR工具能够如此精确地切割RNA。这又是一个很好的例子,说明这些基础生物学驱动的探索可以产生治疗和诊断的新工具。我们肯定还只是触及了自然多样性的表面。”(生物谷 Bioon.com)

参考资料:

Ahsen Özcan et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, doi:10.1038/s41586-021-03886-5.

科学分类资讯推荐

夏季晚上钓鱼,3种钓位不能选,地形特殊未必有鱼 - 天天要闻

夏季晚上钓鱼,3种钓位不能选,地形特殊未必有鱼

夏钓夏钓,白天不如夜钓!随着气温开始飙升,白天的鱼情会越来越差,可怜的鱼只能清晨、晚上的时候觅食,可怜的钓鱼人只能选择钓早晚了。鱼不“吃饭”的时段,任你技术多强,饵料多香,还是钓不到鱼的,跟着鱼情规律走才是取胜之道。
钇”举突破!我国成功掌握这一技术→ - 天天要闻

钇”举突破!我国成功掌握这一技术→

关注义乌科协2025科普惠及民生6月15日,据中核集团消息,经秦山核电“和福一号”辐照过后的钇-90玻璃微球顺利出堆并通过相关检测,标志着我国成功掌握商用堆生产钇-90的技术,可实现批量化生产。
西农破解秦岭野生木耳基因密码:发现进化奥秘  揭示功效秘密 - 天天要闻

西农破解秦岭野生木耳基因密码:发现进化奥秘 揭示功效秘密

中新网陕西杨凌6月17日电 (阿琳娜 张晴 祁建钊)记者17日从西北农林科技大学获悉,该校食用菌中心李鸣雷教授团队的最新研究首次完成秦岭两株野生木耳染色体级基因组图谱绘制,不仅填补了秦岭木耳基因组研究空白,揭示了木耳进化奥秘,更挖掘出强大的保健功能基因,打开了产业升级新空间。 柞水县位于秦岭南麓腹地,林木资源...
苏国生 : 从安溪走出的国内外知名科学家 - 天天要闻

苏国生 : 从安溪走出的国内外知名科学家

苏国生安溪湖头人国内外知名的数量遗传与遗传育种专家长期致力于动物育种领域的研究与实践今天,让我们跟随福建日报记者的视角,走进这位安溪籍科学家的日常。11苏国生教授1979年毕业于福建农学院动物科学专业,从动科毕业后,他奔赴瑞典农业大学深造,在1993年和1996年分别获得动物育种专业硕士和博士学位。如今他早...
环球金融中心顶部“冒烟” 实为蒸汽遇冷后凝结 - 天天要闻

环球金融中心顶部“冒烟” 实为蒸汽遇冷后凝结

环球金融中心顶部“冒烟” 实为蒸汽遇冷后凝结而成 上海环球金融中心顶部冒出的实为“雾气”。 社交媒体截图 最近,上海环球金融中心顶部“冒气”“冒烟”的图片和视频在社交平台流传很广。有网友好奇:到底是怎么回事? 首先要澄清的是,建筑顶部冒出的既不是烟,也不是物理学定义中的蒸汽,而是空气中的水蒸气遇冷后凝结...
智能识电鱼:水域生态安全风险智能阻断与修复 - 天天要闻

智能识电鱼:水域生态安全风险智能阻断与修复

非法电鱼行为对水域生态的破坏堪称“隐形杀手”——高压电流瞬间摧毁鱼卵、幼鱼及水生生物,导致渔业资源枯竭、生物链断裂,甚至引发水体富营养化等次生灾害。传统人工巡查存在效率低、取证难、响应滞后等痛点,难以应对隐蔽性强、时间灵活的电鱼作业。
低空经济成新质生产力“关键赛道” 绘就城市创新蓝图 - 天天要闻

低空经济成新质生产力“关键赛道” 绘就城市创新蓝图

《电鳗财经》电鳗号/文 在粤港澳大湾区核心引擎的驱动下,深圳正以无人机产业为突破口,撬动万亿级低空经济市场。近日,深圳市无人机行业协会会长杨金才提出“树立样板”的愿景,不仅是技术攻坚的号角,更是城市产业升级的战略选择。从物流配送、应急救援到智慧城市,无人机正打破传统产业边界,成为深圳“天空之城”建设的...