[充分性]若▁lim(n→∞)xn=(lim) ̅(n→∞)xn=A, 则A是唯一聚点, 且{xn}有界.【再证充分性,即数列的上、下极限存在且相等时,记为A,证明数列收敛于A】
若存在ε0>0, 使U(A,ε0)外有{xn}的无限多个项,记为【仅当A的邻域外仍有数列的无限多个项,数列才有可能不收敛,使用的仍是反证法】
x_(n1 ), x_(n2 ),…, x_(nk ), …, 则{x_(nk )}有界,【原数列有界,所以子列也有界,且这个子列是一个无限数列 】
由“有无限有界数列有聚点”知, {x_(nk)}有聚点B≠A.
B也是{xn}的聚点. 矛盾!
∴∀ε>0,在U(A, ε)外只有{xn}的有限多个项.【这是数列收敛的邻域充要条件】
∴lim(n→∞)xn=A.
下图可能可以帮你更好地理解上极限、下极限和收敛数列的关系:
很多人对数列极限、聚点的误解来自,与n表示的自然数列的混淆,即数列的极限问题,是在纵轴上探究的,而不是在横轴上探究的,横轴只是给定了一个定义域而已。图中可以看到,在左侧的点,不论多么离散,都不会改变数列极限和聚点的实质。 关键是在趋于无穷大的区间上,A0和A1是数列的两个聚点。如果只有这两个聚点,那么A1就是上极限,A0就是下极限。或者A1,A0之间还有其它聚点,它们仍是上下极限。而当A1=A2时,很明显的,这个聚点就是函数的极限。你看明白了吗?