本章試著給出一個適當視角,來看待人工智慧(AI),回顧我們所做的工作和取得的成就。我們列出了半個世紀以來在人工智慧領域的成就,並討論了最近IBM的沃森-危險邊緣挑戰賽(Watson- Jeopardy Challenge)。我們也權衡了從未達到過人類級別的人工智慧的前景。
大衛·費魯奇(David Ferrucci)
17.0 引言
首先,我們回顧了搜索、知識表示和學習在人工智慧系統建設中的重要性,並給出了示例,說明合適的知識表示有助於解決問題。
其次,我們介紹了在神話和文學中反覆出現的一個主題——創造生命或智能體的嘗試總會遇到可怕的後果。也許,我們應該向人工智慧界提出一些警告。
本書說明了計算機科學中無法求解的問題的概念,即不存在求解演算法的問題。我們自問是否能夠創造人類級別的人工智慧,就是這樣的問題。
接著,我們回顧了半個世紀以來在人工智慧領域的成就。
然後,我們討論了IBM的沃森系統。2011年3月,在一場觀眾眾多的電視比賽中,IBM計算機擊敗了危險邊緣挑戰賽中的兩位常勝Jeopardy冠軍。最後,我們回顧了關於創造生命的若干理論,並解釋了智能和意識。
17.1 提綱挈領——概述
在第 1 章,我們開始了人工智慧旅程。當時我們說,如果你想設計智能軟體,那這個軟體就需要具備以下特點。
(1)搜索能力。
(2)知識表示的語言。
(3)學習的能力。
在早期的工作中,這就已經顯而易見,盲目的搜索演算法(即沒有領域知識),如廣度優先搜索和深度優先搜索的演算法,無法有效、成功地越過它們所面臨的大規模搜索空間這個障礙。
如本書中所述,一條有用的指導原則是,如果你想設計用於執行某項任務的系統,請先查看自然中是否已經存在類似的系統。如果現在是1902年,而你想設計一個「飛行機器」,那麼你的注意力應該集中在鳥類上。1903年,萊特兄弟成功地製造了飛機。飛機的機身相對較薄,並且有兩個突出的大飛翼,這一點都不奇怪(見圖17.1)。
圖17.1 萊特兄弟的飛機,這個早期的模型呈現出了一個雙層翼
盲目搜索演算法不具備所必需的功能來應對人工智慧領域出現的大規模的搜索問題。但是,人類是專家級別的「問題求解機器」。紐厄爾和西蒙認識到了這一特點,研究了在問題求解過程中被要求「說出自己思想(think aloud)」的人類。1957年,這項研究最終導致了一般問題求解器(GPS)的發明。一般問題求解器具有從人類學科中提取出來的啟發式,成功解決了以下問題:水壺問題(見第1章)、傳教士和食人族問題(見第2章)以及康尼斯堡橋問題(見第6章)等。第3章中的搜索演算法以及第4章和第16章中的博弈演算法中,有效地使用了啟發式方法,部分克服了組合爆炸的難題。
知識表示方法也對問題求解的能力產生了實際的影響。第6章中描述的康尼斯堡橋問題如圖6.6所示,此處重新繪製了這幅圖,如圖17.2所示。
問題是:「能否一次並僅有一次經過這7座橋,重新回到起點?」
圖6.6是康尼斯堡橋的圖模型。這部分圖在此重新繪製,如圖17.3所示。
圖17.2 康尼斯堡橋
圖17.3 康尼斯堡橋的圖模型
1736年,萊昂哈德·歐拉(Leonhard Euler)寫了關於圖論的第一篇論文,給出這樣的結論:當且僅當圖17.3所示的橋包含了一個環,且這個環包含了所有的邊和頂點時,圖17.2所示的橋才可以如所描述的那樣遍歷。Euler得出結論,當且僅當每個頂點的度是偶數時,這個圖才包含這樣一個環(現在稱為「歐拉環」)。
顯然,問題的表示對於有效地發現解有著巨大的影響。上述指導原則帶領我們得到了兩種學習範式。人腦(和神經系統)是自然學習系統中最引人注目的例子。在第11章中,它作為一種隱喻出現,在那一章中,我們概述了一種學習的方法——人工神經網路(ANN),它能夠從人類大腦模型中抽象出突出特徵,如高連通性、並行性和容錯能力。在許多問題求解領域,從經濟預測到對弈和控制系統,ANN模型都可以認為是成功的。
第二個範式是進化,這也許不是那麼明顯。達爾文(Darwin)描述了植物和動物物種如何適應環境得以生存。在此處,是物種本身而不是個體在學習。第12章概述了兩種進化學習方法——遺傳演算法(GA)和遺傳規劃(GP)。在從調度到優化的問題求解領域中,這兩種方法都獲得了成功。
17.2 普羅米修斯歸來
在希臘神話中,普羅米修斯是個神,他從天庭中偷取火種,並把火種帶到了人間。有些記述也賦予了他將人類從黏土中造出來的重任。在文學中,以無生命的材料創造生命的主題是普遍存在的。也許最令人毛骨悚然的描述出現在《Frankenstein》一書或瑪麗·雪萊(Mary Shelly)的小說《The Modern Prometheus》中。毫無疑問,讀者熟悉這個科學家創造生命然後對自己的創造物感到驚恐的故事。1931年,由詹姆斯·惠爾(James Whale)執導的電影中,鮑里斯·卡洛夫(Boris Karloff)扮演了怪物的角色。
Shelly小說的第一版出版於1818年,當時工業革命正如火如荼地進行著。人類利用蒸汽動力在製造業和紡織業領域進行了翻天覆地的改革。電報的發明使遠距離通信實際上變成了即時通信。許多人認為這場革命的後遺症並不完全是有益的。我們對蒸汽和煤電,然後是石油,以及最近的核能的依賴,已經嚴重污染了星球、水體,還有空氣。還有人認為,工業革命促進了墮落的物質主義。文學評論家則非常深刻地指出,《弗蘭肯斯坦》的道德是,社會必須警惕其試圖掌控大自然的嘗試。隨著在整個21世紀,人們對智能知識的掌控持續增強,這也許需要不斷向人工智慧界強調這個警告。
其中一個作者(S. L.)在其童年時期看過這部電影:但是到了今天,他睡覺時仍然開著燈。
計算機科學是一門涉及信息和計算的科學領域。其重點是問題的演算法解。20世紀讓這個新生學科謙虛謹慎。由於人們發現了問題可解性的基本限制,因此這個學科就愈加謹慎起來。也就是說,可能存在一些問題,這些問題不存在演算法解。著名的問題就是所謂的「停機問題(halting problem)」。給定任意流程P,運行任意數據w,P(w)會暫停嗎?例如,四色問題也許是圖論中著名的開放性問題。它的命題是「對地圖進行著色,四種顏色是否足以使兩個相鄰區域的顏色不一樣?」1976年,阿佩爾(Appel)和哈肯(Haken)對這個問題做出了肯定的回答。對於這個問題,計算機程序求解了幾百個小時。如果運行這個程序的操作系統可以預測該程序最終會停止,那麼這將大有裨益。停止問題告訴人們,這種先驗知識並不總是可能的。
本書早些時候提到了阿蘭·圖靈(Allen Turing)。1936年,他正在研究什麼樣的函數是可計算的這個問題。[3] 例如,加法是一個可計算的函數,也就是說,可以給出一個逐步的過程,這樣如果將整數X和Y作為輸入,那麼在有限的計算步驟之後,可以獲得它們的和X + Y。他提供了一個現在稱為圖靈機的計算模型(見圖17.4)。圖靈機由如下三部分組成。
(1)輸入/輸出磁帶,在輸入/輸出磁帶寫上輸入問題;同時在磁帶上也寫入了結果。存在各種圖靈機模型;圖17.4所示的是一種雙向無界磁帶的模型。磁帶被分成了單元格,並且在每個單元格中都可以寫入一個符號。磁帶上的每個單元格預先載入了空白符號(B)。
(2)一種包含演算法(即求解問題的分步過程)的有限控制。
(3)讀/寫頭,這可以讀取磁帶上的符號,並將符號寫入此磁帶。它可以向左或向右移動。
圖17.4 圖靈機
Turing討論了通用圖靈機(UTM)的概念——這種圖靈機能夠運行其他圖靈機的程序,即能夠模擬「普通」圖靈機的行為。Turing證明了,對於任意的圖靈機(T),任意輸入(w),即T(w),不可能確定圖靈機(T)是否會停止。這就是所謂的圖靈機停機問題。這個問題更一般的版本(即停機問題),不能被證明是不可判定的。人們不假思索地接受了,圖靈-邱奇論文給出的這個觀點。這篇論文中提到,圖靈機與數字計算機的計算能力相當,結果就是,大多數計算機科學家認為,在圖靈機上無法解決的問題在演算法上也是無法解決的。因此,計算有根本的限制。作為計算機科學的子學科,人工智慧也具有這些基本的限制。人們想知道的是,人類級別人工智慧的創造是否也有這些限制。
17.3 提綱挈領——介紹人工智慧的成果
在本章後續章節中,我們回到創造人類級別人工智慧的可行性。現在,我們簡要介紹前16章中所描述的人工智慧的成就。
- 搜索方面。
- 視頻遊戲設計中已納入了A*,這使遊戲變得更加真實(見第3章)。
- Mapquest、Google和Yahoo地圖使用啟發式搜索。許多GPS和智能手機應用程序都集成了這種技術(見第3章)。
- 用Hopfield網路(見第11章)和進化方法(見第12章)找到難題,有時甚至是NP完全問題(如TSP)的近似解。
- 博弈方面。
- Minimax評估使計算機可以玩比較簡單的遊戲,如tic-tac-toe和nim(見第4章)。
- 由啟發式和其他機器學習工具輔助,通過alpha-beta修剪的Minimax評估使得計算機可以玩錦標賽級別的跳棋(Samuels和Schaeffer)和國際象棋(Deeper Blue擊敗世界國際象棋冠軍Garry Kasparov)(見第16章)。
- 錦標賽級別的奧賽羅程序(Logistello,1997),以及西洋雙陸棋(TD-Gammon,1992)、橋牌(Jack和WBridge 5,2000s)和撲克(2007,見第16章)中的「精通玩家」。
- 模糊邏輯方面。
- 手持式攝像機自動補償虛假的手部移動。
- 汽車牽引力控制裝置。
- 數碼相機、洗衣機和其他家用電器的控制裝置。
- 專家系統方面。
- 具有內置推理和解釋性裝置的知識密集型軟體或所謂的專家系統(ES),可幫助消費者選擇合適的車型、瀏覽在線網站、進行購物等。
- ES還可用於分析、控制、診斷(患者有哪些疾病?)、指導和預測(我們應該在哪裡挖石油?)。
- ES用於多個領域,如藥物、化學分析和計算機配置。
- 只要ES系統用於幫助而不是取代人類,將ES作為人工智慧領域最大的成就之一就不會引起爭議(見第9章)。
- 神經網路方面。
- 雷克薩斯汽車有倒車攝像頭、聲納設備和神經網路。採用這些技術,汽車可以自動並行停放。
- 當車輛太靠近其他車輛或物體時,梅賽德斯汽車以及其他汽車有自動停止控制。
- Google汽車幾乎完全自主,但是它自動駕駛時,車內必須有人。
- 光學字元讀取器(OCR)自動路由大量郵件。
- 自動語音識別系統得到廣泛的應用。軟體智能體例行公事地幫助我們瀏覽信用卡和銀行交易。
- 在機場,當檢測到在「禁飛」名單中的人時,軟體會提供自動安全警報。
- 神經網路協助醫學診斷和經濟預測(見第11章)。
- 進化方法方面。
- 電信衛星的軌道調度,防止通信漸隱消失。
- 優化天線和超大規模集成(VLSI)電路設計的軟體。
- 數據挖掘軟體使數據對公司更有價值(見第12章)。
- 自然語言處理(NLP)方面。
- 會話智能體為個人提供旅遊信息,並協助預約酒店等。
- GPS系統通常向用戶發出語音指令,例如「在下一個路口,左轉」。一些智能手機具有應用程序,允許人們說出請求:「最近的能製作卡布奇諾的咖啡店在哪裡?」
- Web請求允許跨語言進行信息檢索,並在需要時進行語言翻譯。
- 互動式智能體向正在學習閱讀的兒童提供口頭協助(見第13章)。
- 具有神經網路、自然語言處理(見第13章)、語音理解和規劃(見第14章)的機器學習應用程序,在機器人技術方面取得了顯著的進步(見第15章)。
總體來說,對於一個開始其第二個50年發展的計算機科學子學科,來說這是一個不太糟的成績。
{應用之窗!}
Google無人駕駛汽車
1998年,斯坦福大學研究生拉里·佩奇(Larry Page)和謝爾蓋·布林(Sergey Brin)創立了Google。Google最初是一個名為BackRub的搜索引擎,這個搜索引擎使用鏈接來評價網頁的重要性。Google搜索引擎是對「googol」這個詞的戲稱,但是獲得了巨大的成功,並迅速成為地球上強大、知名和主流的搜索引擎。多年來,Google還開發了同樣成功的電子郵件系統「Gmail」和大受歡迎的公共視頻系統「YouTube」。 Google還開發了一款無人駕駛汽車。
Google無人駕駛汽車(見圖17.5)的工程師之一是德米特里·多爾戈夫(Dmitri Dolgov),這個項目的負責人是塞巴斯蒂安·特倫(Sebastian Thrun)博士。Thrun是斯坦福大學人工智慧實驗室的前任主管,並且是Google街景視圖的共同發明人。Google無人駕駛汽車已經測試了好幾年,並且在未來的幾年裡,仍將繼續以實驗的形式呈現。雖然無人駕駛汽車看起來離大規模生產還需要幾年的時間,但是技術人員認為,在不久的將來,它們將像手機和GPS系統一樣受人歡迎。Google認為這項技術可能多年無法盈利,但是在其他無人駕駛汽車製造商的信息和導航服務的可能銷售中,Google可以預見到巨額利潤。
Google無人駕駛汽車使用人工智慧技術,如激光點標記感測附近任何事物的痕迹(如在地上的標記和標誌),做出人類駕駛員應該做出的決定,如轉向以避免障礙或看到行人時停車。
根據法律規定,為了防止出現問題,方向盤後必須有人,還需要技術人員監控導航系統,確保測試安全、不會發生事故。對於不同的駕駛員,你可以選擇不同的駕駛個性,如「小心駕駛」「防守駕駛」和「積極駕駛」。
機器人的反應通常比人類快。基於感受器和設備,機器人能夠全面感知。它也不會分心,也不會有通常會導致事故的其他因素,如疲勞、藥物和粗心。工程師的目標是使這些無人駕駛汽車比人類更可靠。人為錯誤是造成許多事故的原因。此外,這些無人駕駛汽車使用的軟體必須經過仔細測試,必須沒有病毒和惡意軟體。其他關注點是燃油效率和空間效率——也就是說,理論上,無人駕駛汽車是不會發生事故的,所以汽車可能會「擁擠」在道路上。一些Google無人駕駛汽車已經有了1600多千米的行駛記錄,而且沒有任何事故或人為干預。這些車輛經過少量的人為修正,也具有了十萬多千米的行駛記錄。[1]
Google無人駕駛汽車的一個測試是在舊金山附近的校園外開始的。它在約182米的範圍內使用了各種感測器,並遵循編入汽車的全球定位衛星系統或GPS的路線。這輛車在加利福尼亞州的規定速度下,以每小時約105千米的速度行駛。就像人類一樣,在轉彎時,汽車變慢了,接下來加速了一點點。位於汽車頂部的設備提供了詳細的環境及其周圍情況的映射版本,因此它知道需要採用哪些路、哪些路要避開、哪些路是死路。它能夠在忙碌的高速公路上行駛幾英里,並且可以無事故地離開高速公路。它也可以開車穿行,停在紅燈和停止標誌處,能夠與行人互動。如果有人類出現,它會等待他們移動。它有一個語音系統,向車上的人或駕駛員宣布其動作。當人工智慧系統檢測到感測器存在問題時,也會提醒駕駛員。它也可以防止事故,使用檢測系統來指出發生了什麼。駕駛員也可以通過按下右手附近的紅色按鈕、觸摸制動器或轉動方向盤來重新獲得對汽車的控制。
當汽車無人駕駛,系統自動控制時,這稱為巡航模式(cruise mode),此時,汽車裡的人可以放開方向盤。實際上,它成了一種公共交通工具,無費用,不擁擠,不會東張西望且不會有其他因素(這些因素會令普通汽車司機感到分心)。
不過,這仍存在一些法律問題,例如,如果發生意外,誰將為之負責。所有允許無人駕駛汽車測試的州,在無人駕駛汽車時會發生事故的情況方面都沒有制定相關的法律。Google發現,只要無人駕駛汽車的車輛內有人,這個人可以掌控任何可能發生的錯誤,那麼駕駛無人汽車就是合法的。
Google無人駕駛汽車將減少對私家汽車的需求,從而減少交通流量,使得人們有了更多可用的土地,無須更廣泛地鋪設道路。
最近,Google一直在構建具有正常控制標準的實驗性電動汽車,其除了啟動和停止車輛之外,不需要駕駛員控制。人們可通過智能手機應用程序命令汽車自動驅動,到達需要它的人們的所在地,並將人帶到目的地。這輛汽車還發明了一個功能,就是所謂的交通堵塞輔助(Traffic Jam Assist)功能,這允許無人駕駛汽車在行駛過程中跟隨另一輛車。
Google對無人駕駛汽車的計劃是,擁有至少100台電力驅動的新型原型車。Google的團隊將限定它們以約40千米/小時的速度在市區和郊區行駛。測試將由Google人員進行,這將有助於在狹小封閉的地區進行測試。很自然,這需要一段時間來說服監管機構,讓他們接受人們使用無人駕駛汽車是安全的。
圖17.5 Google無人駕駛汽車
參考資料
Thrun S. What we』re driving at. Google, 2010.
Markoff J. Google』s next phase in driverless cars: No steering wheel or brake pedals. New York Times, 2009.
Markoff J. Google Cars drive themselves, in traffic. New York Times, 2014.
17.4 IBM的沃森-危險邊緣挑戰賽
人與機器對戰提供了一個體系,激發著人們對一些技術成就的熱情和宣傳。IBM是此類三個事件的發起人。第一個事件發生在1997年,一台有特殊目的、具有搜索裝置的並行計算機Deeper Blue,在六場比賽中擊敗了國際象棋世界冠軍(見第16章)。
一個TFLOP(teraflop)代表每秒一萬億(1012)次浮點運算。
Blue Gene是一個項目,這個項目專註於生產一些高速的超級計算機來研究生物分子現象。這個項目的機器已經實現了數百TFLOP的速度。2014年,Blue Gene / L系統的速度超過了每秒36萬億次。
一個petaflop對應於每秒一千萬億(1015)次浮點運算。
在過去幾年中,IBM的沃森-危險邊緣挑戰賽一直在進行。其目標是設計一台計算機,它能夠回答使用自然語言提出的問題,而自然語言充滿了歧義。在自然語言處理領域中,問答系統並不新鮮(見第13章)。但是,IBM希望沃森能夠以與優秀的人類玩家(2~3秒)相當的速度進行表演。
有關IBM的沃森-危險邊緣挑戰賽的信息可以在網路上找到。依次輸入「www.IBM.com」和「Watson-Jeopardy Challenge」即可。
頂級的人類參賽者掌握了眾多不同主題的信息,這些主題包羅萬象,從世界地理到百老匯戲劇,從文學到流行文化,無所不包。
已有的一些問題如下。
(1)「2000年,第100集Got Milk廣告中顯示了某個流行歌手3歲和18歲的樣子,她是誰?」正確的答案是:「Britney Spears」Blue J(沃森早期的名字)回答:「Holy Crap」。
(2)「在九球比賽中,每當你將某個球打入袋中時,都要重新開始。」Blue J回答正確:「母球」。
(3)「哪個國家和智利共享最長的邊界?」Blue J的回答不正確:「玻利維亞」正確的答案是第二個選項「阿根廷」。
2007年,IBM高級員工大衛·費魯奇(David Ferrucci)被選為沃森開發團隊負責人。他在語言處理系統方面擁有豐富的經驗。在史蒂芬·貝克(Stephen Baker)的暢銷書[4]中,Ferrucci坦承了兩個相互矛盾的恐懼:第一個是經過數年和數百萬美元的研究後,沃森(以及IBM)在國家舞台上慘敗;第二個是在最後一刻,另一家公司將繞過IBM並設計出一個優勝的系統。事實證明,這些恐懼伴隨了他4年。Ferrucci明白,如果沃森要成功,那麼它必須要載入事實——不只是事實,而且是正確的事實。於是,他們研究和分類了數千個過去的Jeopardy問題,並決定讓沃森裝載成「噸」的維基百科文章。接下來,沃森下載了古騰堡圖書館,「學習」名家著作。沃森也收集了來自人類競爭對手的見解。在沃森項目早期,人們發現,深刻的知識不是必需的——具有許多不同主題的傳統知識就已足夠。肯·詹寧斯(Ken Jennings)沒有通過苦讀若干厚厚的書來準備比賽,而是使用快閃記憶體卡練習,他希望在廣泛的話題上擁有一些粗淺的知識。
接下來,開發人員填鴨式地餵食了沃森百科全書、詞典、新聞文章和網頁。正如Baker所描述的那樣:「(沃森)痛苦而緩慢。」在接下來的幾年裡,沃森開始與前危險邊緣競爭者進行比賽。慢慢地,它的表現開始有所改善。
沃森由2000多個處理器組成,每個處理器並行工作,遵循不同的推理線程。它為每個問題顯示了幾個答案,並且列出了每個答案的置信度。每當沃森對其中一個回答充滿自信時,它就會快速地按下蜂鳴器。
逐漸地,面對人類的競爭,沃森開始表現良好。它偶爾會失言,發出褻瀆的語言。當然,IBM的企業形象很重要;他們安裝了一個過濾器,使得沃森不會發出最常見的褻瀆語言。
人機比賽於2011年3月初舉行。儘管出現了一些尷尬的失誤,但沃森最終獲勝了。其中最有名的失誤是最後一道危險邊緣問題:
「它最大的機場是以第二次世界大戰來命名。」在「美國城市」的類別中,沃森回答說:「多倫多」
為了給沃森辯護,Ferrucci解釋說,伊利諾伊州有一個多倫多,多倫多也擁有一支美國職業棒球隊。不過,事實依然是沃森犯了一個錯誤。當然,一個有趣的問題是:「類似沃森的機器有什麼樣的未來?」危險邊緣冠軍計算機肯定沒有市場。但是,IBM預計,沃森及其繼任者在醫學、法律等領域將會受到專家式的培訓,在這些領域,新知識正在以驚人的速度被發現。如果「醫學沃森」閱讀了最新的期刊,並可以就患者的最佳治療方法向醫生提出建議,那麼這將大有裨益。或者,「法律沃森」可以識別先例,從中找到法律的辯護點。
為了幫助宣傳沃森-危險邊緣挑戰賽,IBM於2011年2月派代表前往紐約城市學院和紐約市立大學研究生院(CUNY)。IBM團隊成員之一的洛迪克·薩德羅齊尼(Wlodek Zadrozny)在紐約城市學院進行了講解演講。參加此次活動的IBM團隊成員如圖17.6所示。圖17.7為Wlodek Zadrozny與紐約城市學院的與會者一起討論沃森。最後,傑瑞·莫伊(Jerry Moy)主持了兩場CUNY演示,如圖17.8所示。
圖17.6 在紐約城市學院的IBM團隊成員(左至右):Bruno Bonetti、Jerry Moy、Faton Avdiu、Arif Sheikh、Andrew Rosenberg、Wlodek Zadrozny、Raul Fernandez、Vincent DiPalermo、Andy Aaron和Rolando Franco
圖17.7 Wlodek Zadrozny與紐約城市學院的與會者一起討論沃森
圖17.8 Jerry Moy主持了兩場CUNY演示
本書經常提到,人工智慧技術的正確角色是協助人類,而不是取代人類。沃森將為不同領域的人類專家提供寶貴的幫助。
{人物軼事}
雷·庫茲維爾(Ray Kurzweil)
Ray Kurzweil(見圖17.9)是世界著名的科學家、發明家、企業家和未來學家。《福布斯》雜誌稱他為「托馬斯·愛迪生的合法繼承人」,並將他列為全球8大頂級企業家之一。一直以來,人們都說Kurzweil「自成一個行業。」 他的一些著名發明包括第一台CCD平板掃描儀、第一個全方位字體光學字元識別、第一台盲人列印語音閱讀機、第一個文本語音合成器、第一台音樂合成器(能夠重現大鋼琴和其他管弦樂器)以及市場上銷售的大型辭彙語音識別系統。
圖17.9 Ray Kurzweil
Kurzweil獲得了50萬美元的MIT-Lemelson獎獎金,這是為創新而設的大獎。1999年,他獲得了美國國家技術勳章,這是美國在技術方面國家級別的最高榮譽。2002年,他正式入駐美國專利局成立的國家級發明家名人堂。
此外,他還獲得了20個榮譽博士學位,有3位美國總統授予其榮譽。他創作了7本書,其中5本是暢銷書。《The Age of Spriritual Machines》被翻譯成9種語言,曾位列亞馬遜科學暢銷書的第一名。他的書《The Singularity Is Near》是《紐約時報》的暢銷書,並且在科學和哲學方面曾是亞馬遜排名第一的書。
2012年,Kurzweil被任命為Google工程總監,帶領團隊進行機器智能和自然語言處理方面的開發工作。Kurzweil的書還包括:
- 《The Age of Intelligent Machines》(1990)。
- 《The 10% Solution for a Healthy Life》(1993)。
- 《The Age of Spiritual Machines》(1999)。
- 《Fantastic Voyage (with Dr. Terry Grossman)》(2004)。
- 《The Singularity》(2005)。
- 《Transcend: Nine Steps to Living Well》(與特里·格里斯曼博士合著)(2009)。
- 《How to Create a Mind》(2012)。
此處關於Ray Kurzweil的大部分信息源來自KurzweilAI網站。
奇點(Singularity)
2005年, Ray Kurzweil出版了《The Singularity is Near: When Humans Transcend Biology》一書,這可能是他出版的最具有爭議的書籍了。這本巨著的中心主題是他所說的「Law of Accelerating Returns」。他認為,計算機、遺傳學、納米技術和人工智慧正在呈指數增長。據他預測,到2045年,人工智慧將超過這個星球上的人類智慧。圖17.10為Kurzweil AI主頁描繪的奇點。
圖17.10 KurzweilAI.net主頁描繪的奇點(Singularity)
庫茲維爾認為進化要經過如下6個階段:
(1)物理與化學。
(2)生物學和DNA。
(3)大腦。
(4)技術。
(5)人類技術與人類智力的融合。
(6)宇宙醒來。
他聲稱,前4個階段已經發生了,而人類現在處於第5階段。到2045年,技術急劇進步,人們能夠通過納米技術和人工智慧讓身體變得更健康。
Kurzweil.net描述的摩爾定律如圖17.11所示。
圖17.11 在Kurzweil.net描述的摩爾定律
17.5 21世紀的人工智慧
回到先前討論中提出的懸而未決的問題:人類級別人工智慧的創造是否會超出人工智慧的基本界限?我們先來思考一下人類智力的起源,然後再思考一下生命本身的起源。
英國著名科學家理查德·道金斯(Richard Dawkins) [5]解決了後一個問題,他在達爾文的進化論中找到了見解。當然,40億年前,地球上沒有動物或植物——只是基本原子的「原始湯」。Dawkins認為,達爾文的理論可以推廣到「穩定者生存」,換句話說,穩定的原子(和分子)更有可能在這個古老的地球上生存下去。他進一步推測,在早期的歷史上,這個星球擁有豐富的水、二氧化碳、甲烷和氨,因此可能形成氨基酸(作為蛋白質的組成成分的複合分子)。蛋白質是已知生命的前驅體。Dawkins設想,在這個星球漫長的生命之路上,下一步是所謂的「複製因子」的意外創造。這個複製因子具有一個顯著的性質——能夠忠實地複製自己。他認為,在這個原始環境中,能夠快速準確地複製自己的複製因子是穩定的。
複製(或繁殖)過程本身需要有穩定的基本「原材料」的供給。毫無疑問,不同的複製因子不斷競爭,以獲得充分的水、二氧化碳、甲烷和氨的供給。這一進化過程持續了40億年。Dawkins認為,經歷了這個漫長的進化回合,在當今棲息在這個星球上的動植物中,我們可以找到繼承者——這就是基因。
關於這個星球上可能的生命起源,Dawkins通過解釋這些基因如何努力確保生存來繼續其非凡的論述。在過去大約6億年的時間裡,它們的行為非常像第12章中引用的虛構的精靈。它們一直在塑造人類的眼睛、耳朵、肺等,生命之舟(即身體)也就從這些器官中構建而來。在這一論述中,動物的身體和植物好像只是保護所有重要基因生存的保護性隔斷。最近,隨著深入(SL)閱讀Dawkins的作品,我的思緒回到了「星球大戰」系列電影中的一個場景。在這個場景中,敵方部隊將士兵置於裝有巨腿的機器人戰鬥機器中,這形成了士兵的保護殼。即使我們接受了Dawkins的理論,但還是有一個問題——「人類意識的起源在哪裡?」Dawkins可能會認為那些擁有意識的動物(再次通過自然選擇產生的)將具有優勢,因此可以實現相對的穩定性,從而確保生存。
傑拉德·埃德爾曼(Gerald Edelman)是一名生物學家,曾獲得了諾貝爾獎。他提出了一種意識生物學理論[6],這個理論也建立在達爾文主義的基礎上。他認為意識和心靈純粹是生理現象。神經元組自組織成許多複雜和適應性強的模塊。Edelman認為,腦具有功能可塑性,也就是說,由於人類基因組沒有足夠的編碼能力來完全指定腦結構,因此大量的腦組織是自我定向的。
在物理學中,統一場理論應該是關於一切事物的理論,這個理論試圖將自然界中發生的各種力統一起來,例如重力、電磁力、強力和弱力。
Marvin Minsky在《Society of Mind》中[7]解決了一個更為廣泛的問題。他問:「大腦是如何組織的?」「認知是如何發生的?」正如Dawkins告訴我們的,人類的大腦是歷經數億年演變而來的。統一場理論無法簡單直白地解釋人類頭骨內複雜器官的功能。構建一種智慧好比組建一支沒有指揮者的管弦樂隊。其中,樂器就是智能體(見第6章),它們不是在播放音樂,而是在解釋世界。一些智能體有助於了解語言,另一些智能體可以解釋視覺場景,還有一些智能體為人類提供了常識(見第9章中Cyc項目的討論)。除非智能體之間能進行有效的通信,否則這一切毫無意義。Minsky假設,在任何時間點,個人的心理狀態可以解釋為一種功能,這個功能中的智能體子集是活躍的。也許人工智慧還是太過年輕的一個領域,還沒有準備好提出一個像Minsky這樣的智能「統一場理論」。但是,當人工智慧成熟的時候,Minsky的《Society of Mind》可能會在其中發揮突出的作用。
2015年,在生物和化學層面上,人們完全了解了個體神經元的功能。在人類的知識中,依然存在的不足是,一群神經元如何處理感覺數據、編碼經驗、理解語言,以及在更一般意義上如何促進認知、啟動意識。目前的研究使用X射線和其他掃描技術,在功能模塊層面獲得對大腦的理解。Kurzweil預測[8],到21世紀中葉,我們將對人類大腦有一個完整的、體系架構般的理解。
此外,他推測,計算機組件的小型化將會提升到一個新階段,到那時,使用硬體來完全實現大腦是可行的——這種實現可能需要數十億個人工神經元和數萬億甚至數十億個神經元的連接。也許在那時,我們將有足夠的力量來實現人類層次的人工智慧。對我們而言,比較明智的做法是記住普羅米修斯創造完全意識人類的「獎勵」,即他被捆綁著,這樣獅子就可以享用他的肝臟,然後他的肝臟再生,讓獅子再次享用他的肝臟。科幻文學概述了人類創造人類層次人工智慧的無數情景。我們希望,如果人工智慧可以永遠遵循這個崇高的目標,那麼這個獎勵將比給普羅米修斯的「獎勵」更令人滿意。
17.6 本章小結
在本章中,我們回顧了近50年來人工智慧領域所取得的許多成就。我們將人工智慧放在一個框架中——作為計算機科學的一門子學科。就像考慮計算機科學中眾所周知的停機問題是不可判定的那樣,我們也就「創建人類層次的人工智慧是否可能」這一命題進行了思考。我們討論了IBM的沃森系統,並描述了其作為法律和醫學專業人員助理的功能。
最後通過思考生命、智能和意識的起源,我們做出了總結,並介紹了Kurzweil的樂觀觀點,即在不久的將來成功創建人類層次的人工智慧的可能性。
本文摘自《人工智慧》(第2版)
人工智慧(第2版)
[美] 史蒂芬·盧奇(Stephen Lucci),丹尼·科佩克(Danny Kopec) 著
- 人工智慧百科全書
- 易於上手的人工智慧自學指南
- 涵蓋機器學習 深度學習 自然語言處理 神經網路 計算機博弈等各種知識 圖文詳細 講解細緻 配備豐富的教學資源和學習素材
- 美國經典教材,在美亞上,被評價為自Russell & Norvig的《人工智慧:一種現代方法》之後更好的教材,更加適合本科生使用。
本書是作者結合多年教學經驗、精心撰寫的一本人工智慧教科書,堪稱「人工智慧的百科全書」。全書涵蓋了人工智慧簡史、搜索方法、知情搜索、博弈中的搜索、人工智慧中的邏輯、知識表示、產生式系統、專家系統、機器學習和神經網路、遺傳演算法、自然語言處理、自動規劃、機器人技術、高級計算機博弈、人工智慧的歷史和未來等主題。
本書提供了豐富的教學配套資源,適合作為高等院校人工智慧相關專業的教材,也適合對人工智慧相關領域感興趣的讀者閱讀和參考。