加载数据集
与您的机器学习实验数据集一起工作
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
2. 将数据分为训练集和测试集
将您的数据划分,分配部分用于训练和评估:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
3. 训练模型
使用 randomForestClassifier 训练 ML 模型:
from sklearn.ensemble import randomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
4. 进行预测
访问模型预测:
predictions = model.predict(X_test)
5. 评估模型性能
为了评估您的模型,测量其在预测中的准确性:
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, predictions)
print(f"Model accuracy: {accuracy}")
6. 使用交叉验证
使用交叉验证:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
print(f"Cross-validation scores: {scores}")
7. 特征缩放
创建您特征的适当比例,使模型能够更有效地学习:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
8. 网格搜索参数调整
为了优化您模型的参数,寻求最佳组合:
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [10, 50, 100], 'max_depth': [None, 10, 20]}
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)
9. 管道创建
为了简化您的数据处理和建模步骤,打造一个无缝的流程:
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier())
])
pipeline.fit(X_train, y_train)
10. 保存和加载模型
为了保护您的模型:
import joblib
# Saving the model
joblib.dump(model, 'model.joblib')
# Loading the model
loaded_model = joblib.load('model.joblib')
使用 Plotly 库(交互式数据可视化)
创建基本折线图
创建折线图:
import plotly.graph_objs as go
import plotly.io as pio
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='lines'))
pio.show(fig)
创建散点图
创建散点图:
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers'))
pio.show(fig)
3. 创建柱状图
创建柱状图:
categories = ['A', 'B', 'C', 'D', 'E']
values = [10, 20, 15, 30, 25]
fig = go.Figure(data=go.Bar(x=categories, y=values))
pio.show(fig)
4. 创建饼图
创建饼图:
labels = ['Earth', 'Water', 'Fire', 'Air']
sizes = [25, 35, 20, 20]
fig = go.Figure(data=go.Pie(labels=labels, values=sizes))
pio.show(fig)
5. 创建直方图
创建直方图:
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
fig = go.Figure(data=go.Histogram(x=data))
pio.show(fig)
6. 创建箱线图
创建箱线图:
data = [1, 2, 2, 3, 4, 4, 4, 5, 5, 6]
fig = go.Figure(data=go.Box(y=data))
pio.show(fig)
7. 创建热图
创建热图:
import numpy as np
z = np.random.rand(10, 10) # Generate random data
fig = go.Figure(data=go.Heatmap(z=z))
pio.show(fig)
8. 创建 3D 曲面图
创建 3D 曲面图:
z = np.random.rand(20, 20) # Generate random data
fig = go.Figure(data=go.Surface(z=z))
pio.show(fig)
9. 创建子图
创建子图:
from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2)
fig.add_trace(go.Scatter(x=x, y=y, mode='lines'), row=1, col=1)
fig.add_trace(go.Bar(x=categories, y=values), row=1, col=2)
pio.show(fig)
10. 创建交互式时间序列
与时间序列一起工作:
import pandas as pd
dates = pd.date_range('20230101', periods=5)
values = [10, 11, 12, 13, 14]
fig = go.Figure(data=go.Scatter(x=dates, y=values, mode='lines+markers'))
pio.show(fig)